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Abstract
The main results for the two-dimensional quantum gravity, conjectured from
the matrix model or integrable approach, are presented in the form to be
compared with the worldsheet or Liouville approach. In a spherical limit,
the integrable side for minimal string theories is completely formulated using
simple manipulations with two polynomials, based on residue formulae from
quasiclassical hierarchies. Explicit computations for particular models are
performed and certain delicate issues of nontrivial relations among them
are discussed. They concern the connections between different theories,
obtained as expansions of basically the same stringy solution to dispersionless
Kadomtsev–Petviashvili hierarchy in different backgrounds, characterized by
nonvanishing background values of different times, being the simplest known
example of the change of the quantum numbers of physical observables, when
moving to a different point in the moduli space of the theory.

PACS numbers: 04.60.−m, 11.25.Sq

1. Introduction

The problem of solving two-dimensional quantum gravity has already existed for more than 20
or even more than 25 years. By its basic definition one usually takes the Polyakov path integral
[1], where the integration over the metrics on two-dimensional string worldsheets has been
reduced to the study of naively simple, but in fact quite nontrivial, two-dimensional conformal
Liouville field theory. The worldsheet approach allowed us to immediately determine only
the relatively simple quantities—such as scaling dimensions—of the operators of the two-
dimensional quantum gravity [2, 3]. The computation of their correlators—even on the

* Based on talk presented at the conference Liouville Field Theory and Statistical Models (dedicated to the memory
of Alexei B Zamolodchikov) in Moscow in June 2008.
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worldsheets of the simplest spherical topology—appeared to be a problem of much higher
complexity, and was (yet only partially) solved very recently.

Fortunately, two-dimensional quantum gravity is a renormalizable theory—in the most
physically important sense of the word, it means that the details of regularization of the theory
at the microscopic scale do not affect its macroscopic properties: the ‘observable’ scaling
dimensions and correlators. In other words, two-dimensional quantum gravity possesses a
strong universality property which means that quite different methods of the computation give
rise basically to the same result.

The first sign of this was already observed in the middle of the 1980s of the last century.
The idea of summing over the discrete triangulations of worldsheets instead of the integrations
over the metric in continuous theory had demonstrated its efficiency in a two-dimensional case,
quite in contrast with the nonrenormalizable gravity of higher dimensions. Moreover, it turned
out that summing over triangulations of the two-dimensional surfaces can be itself reformulated
as summing over the fat graphs of the matrix models [4]. The duality between the matrix model
(the zero-dimensional gauge theory) and continuous two-dimensional worldsheet gravity is in
fact nothing but the first studied example of the nowadays famous gauge/string duality.

By the matrix model approach, two-dimensional quantum gravity was claimed to be
‘completely solved’ [5] in the beginning of the 1990s of the previous century. This solution
was nicely formulated [6, 7] in terms of special stringy solutions to the hierarchies of integrable
equations, they being all the well-known polynomial reductions of the Kadomtsev–Petviashvili
(KP) hierarchy. In practice, this has opened a possibility of computing exactly the correlators
in two-dimensional gravity (in the framework of the ‘matrix model’ approach) at least in
the spherical approximation (when all closed string loops are suppressed) by methods of
the dispersionless KP (dKP) hierarchy, which turn this problem into the problem of solving
algebraic nonlinear equations. Below, following [8], we shall demonstrate how this leads
straightforwardly to the computation of invariant correlation numbers—the ratios of the
correlation functions which do not depend upon the normalizations of particular operators.

However, it is still a great puzzle and, at least partially, an open problem whether the
matrix model approach leads exactly to the same results as the original worldsheet approach.
Partially this is related to the fact that the worldsheet quantum Liouville theory of [1] is a
rather specific two-dimensional quantum field theory which is yet to be fully understood.
The two- and three-point functions in Liouville theory were computed in the early 1990s
[9, 10], but it turned out that it was only after the discovery of the higher order equations of
motion by Alesha Zamolodchikov [11] that it appeared to be possible to compute the generic
multipoint correlation functions of the operators of minimal (p, q) models coupled to the two-
dimensional Liouville gravity, where the integrands on the moduli spaces of worldsheets with
punctures are basically reduced after using the higher order equations to the total derivatives.

These correlation functions could now be compared with the results extracted from the
‘matrix model’ approach or, more strictly, from the formulation of minimal string theory in
the language of integrable hierarchies.

2. dKP for (p, q)-critical points

According to a widely believed hypothesis, the so-called (p, q) critical points of the two-
dimensional gravity (or (p, q) minimal string theory) are most effectively described by the
tau function of the p-reduced KP hierarchy, satisfying the string equation. The logarithm
of this tau function should be further expanded around certain background values of the
time variables, with necessary tp+q �= 0. In particular, it means that the correlators on the
worldsheets of spherical topology (the only ones, partially computed by now by means of
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two-dimensional conformal field theory [11, 12]) are governed by the quasiclassical tau
function of the dispersionless KP or dKP hierarchy, which is a very reduced case of generic
quasiclassical hierarchy from [13].

For each (p, q) th minimal theory one should consider a solution of the p-reduced dKP
hierarchy or, more strictly, its expansion in the vicinity of nonvanishing tp+q = p

p+q
and

vanishing other times, perhaps except for the cosmological constant x, chosen in a different
way for the different theories (the so-called conformal backgrounds). If q = p + 1 (the unitary
series) the cosmological constants x ∼ t1 basically coincide with the main first time of the KP
hierarchy, but for ‘non-unitary’ backgrounds the quantum numbers change, and this causes
certain nontrivial relations on the space of KP solutions to be discussed below.

2.1. Residue formulae

The geometric formulation of results for minimal string theories in terms of the quasiclassical
hierarchy can be sketched in the following way.

• For each (p, q)th point, take a pair of polynomials

X = λp + · · · Y = λq + · · · (1)

of degrees p and q respectively. They can be thought of as a dispersionless version of the
Lax and Orlov–Shulman operators of the KP theory,[

X̂, Ŷ
] = h̄

X̂ = ∂p + · · · , Ŷ = ∂q + · · · , (2)

or as a pair of (here already integrated) Krichever differentials with the fixed periods on
a complex curve (for dKP—a rational curve with global uniformizing parameter λ). It is
also convenient to combine these polynomials into a generating differential

dS = Y dX, (3)

whose periods and singularities define the variables of the quasiclassical hierarchy. Since
on the rational curve (λ-plane or Riemann sphere with the marked point P0, where λ = ∞)
all periods of (3) vanish, the time variables are related to the residues or the singular part
of expansion of differential dS at point P0.

• The variables of the dispersionless KP hierarchy are therefore introduced by residue
formulae [13–15]

tk = 1

k
resP0ξ

−k dS, k > 0

∂F
∂tk

= resP0ξ
k dS, k > 0,

(4)

where

ξ = X
1
p = λ

(
1 + · · · +

X0

λp

) 1
p

(5)

is the distinguished inverse local co-ordinate at the point P0, where λ(P0) = ∞ and
ξ(P0) = ∞. From (4), it also follows for the second derivatives

∂2F
∂tn∂tk

= resP0(ξ
k dHn) (6)

while the third derivatives are given by the formula

∂3F
∂tk∂tl∂tn

= resdX=0

(
dHk dHl dHn

dX dY

)
. (7)
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In (6) and (7), the set of 1-forms

dHk = ∂dS

∂tk
, k � 1 (8)

(derivatives are taken at fixed X), corresponds to the dispersionless limit of the KP flows
and can be integrated up to polynomial expressions

Hk = X(λ)
k/p
+ (9)

in uniformizing co-ordinate λ = H1.

Also note that the tau functions of (p, q) and (q, p) theories do not coincide, but are related
by the Legendre or Fourier transform [16], exchanging the polynomials (1) by each other
X ↔ Y .

2.2. Solution to dKP

The fact that 1-forms (8) can be integrated up to polynomials (9) leads to an explicit expression
for the integrated generating differential (3), or

S =
p+q∑
k=1

tkHk =
p+q∑
k=1

tkX
k/p(λ)+, k mod p, (10)

depending already upon the coefficients of the polynomial X(λ) only. In other words, formula
(10) means that the first part of equations (4) has been already effectively resolved for the
coefficients of Y (λ). The dependence of the coefficients of X(λ) = λp +

∑p−2
k=0 Xkλ

k over the
KP times (4) is determined in the most easy way from dS|dX=0 = 0, which is now a system
of p − 1 ‘hodograph’ equations dS

dλ
= 0 imposed at p − 1 roots of X′(λ) = 0.

A simple observation that any Hamiltonian (9) is a polynomial in terms of the variable
λ = H1 leads to dispersionless Hirota equations, which express any second derivative ∂2F

∂tk∂tn

with arbitrary k and l in terms of the second derivatives ∂2F
∂tk∂t1

where one of the indices is fixed
and corresponds to the first time. From formulae (4), one finds that

dS =
ξ→∞

∑ (
ktkξ

k−1dξ +
∂F
∂tk

dξ

ξk+1

)
, (11)

which is just an expansion in the local co-ordinate at the marked point P0. Taking the time
derivatives (cf with (8)) gives the set

Hk = ∂S

∂tk
= ξk −

∑
j

∂2F
∂tk∂tj

1

jξ j
= ξk(λ)+, k > 0, (12)

which forms a basis of meromorphic functions with poles at the point P0 or just a particular
polynomial basis, explicitly fixed by the last equation. The set of the powers λk has the
same singularities as the set of functions (12), i.e. these two are related by simple linear
transformation, e.g.

H1 = λ, H2 = λ2 + 2
∂2F
∂t2

1

,

H3 = λ3 + 3
∂2F
∂t2

1

λ +
3

2

∂2F
∂t1∂t2

, · · · .
(13)

These equalities follow from the comparison of the singulars at the P0 part of their expansions
in ξ , following from (12). Comparing the negative ‘tails’ of the expansion in ξ of both sides of
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equation (13) expresses derivatives ∂2F
∂tk∂tl

(of Hk on the lhs) in terms of only those with k = 1
(of λ = H1 on the rhs). These relations are called the dispersionless KP or the dKP Hirota
equations, e.g.

∂2F
∂t1∂t3

= 3

8
X2

0 = 3

2

(
∂2F
∂t2

1

)2

,
∂2F

∂t3∂t3
= 3

8
X3

0 = 3

(
∂2F
∂t2

1

)3

. (14)

We have listed here those that will be of some interest for two-dimensional quantum gravity.

2.3. Scaling

Under the scaling X → �pX, Y → �qY (induced by λ → �λ and therefore ξ → �ξ ), the
times (4) transform as tk → �p+q−ktk . Then from the second formula of (4) it follows that the
function F scales as F → �2(p+q)F or, for example, as

F ∝ t
2 p+q

p+q−1

1 f (τk), (15)

where f is supposed to be a scale-invariant function of the corresponding dimensionless ratios

of the times τk = tk
/
t

p+q−m

p+q−1

1 (4). In the simplest (p, q) = (2, 2K − 1) case of dispersionless
KdV, one also expects a natural scaling of the form

F ∝ (t2K−3)
K+ 1

2 f(tl) (16)

with tl = t2l−1/(t2K−3)
(K−l+1)/2, where the role of the cosmological constant is played by the

time t2K−3 ∝ �4.

2.4. KdV series

More explicit formulae can be written for the ‘KdV series’ (p, q) = (2, 2K−1), corresponding
to the p = 2 KdV reduction of the KP hierarchy. Now

X = λ2 + 2u, ξ =
√

X =
√

λ2 + 2u

Y = λ2K−1 +
K−1∑
k=1

ykλ
2k−1

(17)

and the explicit formula (10) reads as

S =
K+1∑
k=1

t2k−1X
k−1/2(λ)+. (18)

Dependence on u upon the flat times is determined by a single equation

dS|dX=0 = 0 (19)

since dX = 2λ dλ has the only zero at λ = 0, or vanishing of the polynomial

P(u) ≡ 1

2

dS

dλ

∣∣∣∣
λ=0

=
K∑

k=0

(2k + 1)!!

k!
t2k+1u

k = 0. (20)

Integrating the square of the polynomial (20)

F = 1

2

∫ u

0
P 2(v) dv = 1

2

K∑
k,l=0

t2k+1t2l+1
(2k + 1)!!(2l + 1)!!

k!l!(k + l + 1)
uk+l+1, (21)
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one gets the string free energy—the logarithm of the quasiclassical tau function—due to the
formula

F = 1

2

∑
k,l

tktl resP0(ξ
k dHl), (22)

expressing free energy [14] in terms of its second derivatives, and since the coefficient on the
rhs of (21) exactly coincides with the second derivative (6),

resλ=∞(ξ 2k+1 dH2l+1)

=
∑
n�0

l∑
m=0

(2u)n+m

n!m!

�(k + 3/2)�(l + 3/2)(2(l − m) + 1)

�(k + 3/2 − n)�(l + 3/2 − m)
resλ=∞(dλ λ2(k+l−n−m)+1)

= (2u)k+l+1�(k + 3/2)�(l + 3/2)
2

π

l∑
m=0

(−)l−m

m!(k + l + 1 − m)!

= (2k + 1)!!(2l + 1)!!

k!l!(k + l + 1)
uk+l+1, (23)

where the last equality holds, in particular, due to binomial identity
∑l

m=0(−)m
(
s

n

) =
(−)l

(
s−1

l

)
.

3. Examples: particular (p, q) models

3.1. Pure gravity: the explicit partition function

In this case (p, q) = (2, 3), one has only two nontrivial parameters t1 and t3, and the partition
function can be calculated explicitly. The times (4) are expressed by

t5 = 2
5 , t3 = 2

3Y1 − X0, t1 = 3
4X2

0 − X0Y1

t4 = 1
2Y2, t2 = Y0 − Y2X0

(24)

in terms of the coefficients of the polynomials

X = λ2 + X0, Y = λ3 + Y2λ
2 + Y1λ + Y0. (25)

The odd times t1, t3 and t5 do not depend upon the even coefficients Y0 and Y2 of the second
polynomial in (25), and in what follows we choose Y2 = Y0 = 0, ensuring t2 = t4 = 0.
Relations (24) can then be easily solved for the latter coefficients of

X = λ2 + X0, Y = λ3 + Y1λ, (26)

giving rise to

X0 = 1
3

√
9t2

3 − 12t1 − t3, Y1 = 1
2

√
9t2

3 − 12t1. (27)

The second half of residues (4) gives

∂F
∂t1

= 1

8
X3

0 − 1

4
Y1X

2
0

∂F
∂t3

= −1

8
Y1X

3
0 +

3

64
X4

0. (28)

This results in the following explicit formula for the quasiclassical tau function:

F = 1

3240

(
9t2

3 − 12t1
)5/2

+
1

4
t3
3 t1 − 1

4
t3t

2
1 − 3

40
t5
3 . (29)

At t3 → ∞ (expansion at t1 → 0), formula (29) gives

F =
t3→∞ − t3

1

18t3

(
1 + O

(
t1

t2
3

))
, (30)
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which is the partition function of the Kontsevich model [17, 18] (also identified with the
(2, 1)-point or topological gravity). At t1 → ∞, the tau function (29) scales as F ∝ t

5/2
1 or as

a partition function of the pure two-dimensional gravity; expansion at t1 → ∞ gives

F = (−3t1)
5/2

(
4

405
− 1

54

t2
3

t1
+

1

96

t4
3

t2
1

+ O

(
t6
3

t3
1

))
+ · · · (31)

modulo analytic terms.
Formula (29) is the only example of exact computation. For the rest, one needs to

solve perturbatively the nonlinear string equation. It contains a polynomial part, which
contributes only to a finite number of correlation functions. Usually such a ‘non-universal’
part is neglected, when comparing the result of the computation with the worldsheet Liouville
theory. It also vanishes at t3 = 0 or at vanishing of the time, corresponding to the so-called
boundary operator (see e.g. [21]), the t2K−1 variable in the (2, 2K − 1) KdV series, which
we shall usually neglect in what follows. However, these terms are essential, when taking the
limit (30) to the topological Kontevich model, and it means that they come from the contact
terms of topological origin.

3.2. The gravitational Yang–Lee model: (p, q) = (2, 5)

The calculation of times according to (4) gives

t1 = − 5
8X3

0 + 3
4Y3X

2
0 − Y1X0 t3 = 5

4X2
0 − Y3X0 + 2

3Y1

t5 = 2
5Y3 − X0 t7 = 2

7

(32)

for the polynomials

X = λ2 + X0 Y = λ5 + Y3λ
3 + Y1λ. (33)

These equations are easily solved for

Y1 = 3
2

(
t3 + 5

4X2
0 + 5

2 t5X0
)

Y3 = 5
2 (X0 + t5), (34)

ending up with the only nonlinear string equation for X0:

t1 = − 5
8X3

0 − 3
2 t3X0. (35)

The one-point functions (4) are given by

∂F
∂t1

= −15

64
X4

0 − 3

8
t3X

2
0,

∂F
∂t3

= − 9

64
X5

0 − 3

16
t3X

3
0 (36)

while the two-point functions are given by

∂2F
∂t2

1

= X0

2
,

∂2F
∂t1∂t3

= 3

8
X2

0,
∂2F

∂t3∂t3
= 3

8
X3

0. (37)

The latter expressions can be obtained by differentiation (36) upon following from (35) explicit
formulae for ∂X0

∂t1
and ∂X0

∂t3
, or they follow directly from the Hirota equations (14).

To compare the predictions of the ‘integrable’ approach for correlators in two-
dimensional gravity with the calculations in worldsheet theory, one first needs to make
certain correspondences in the space of coupling constants. The simplest one comes from
the scaling properties (15) and (16). In the Yang–Lee theory, the role of the cosmological
constant is played by the KdV time t3, and from the scaling properties of the ‘fixed area’

7



J. Phys. A: Math. Theor. 42 (2009) 304021 A Marshakov

partition function FA(t1) = A−7/2z(t1A3/2) (cf [19]) one gets for the Laplace transformed
F(t1, t3) = ∫ ∞

0
dA
A

e−t3AFA(t1) or

F = t
7/2
3 f

(
t1

t
3/2
3

)
≡ t

7/2
3 f(t)

∂F
∂t1

= t2
3 f′,

∂2F
∂t2

1

= t
1/2
3 f′′, . . . ,

(38)

and the string equation turns into

t + 5(f′′)3 + 3f′′ = 0 (39)

to be solved for the coefficients fn ≡ f(n)|t=0 in the expansion of

F = t
7/2
3 f0 + t1t

2
3 f1 +

t2
1 t

1/2
3

2
f2 +

t3
1

6t3
f3 + · · · , (40)

which gives rise to rational expressions

f3 = − 1

3
(
1 + 5f22

) , f4 = − 10f2

9
(
1 + 5f22

)3 , f5 = 10
(
1 − 25f22

)
27

(
1 + 5f22

)5

f6 = 1000f2
(
1 − 10f22

)
81

(
1 + 5f22

)7 , f7 = −1000
(
1 − 95f22 + 550f42

)
243

(
1 + 5f22

)9

f8 = −70000f2
(
2 − 70f22 + 275f42

)
2187

(
1 + 5f22

)11 , . . .

(41)

in terms of the two-point function f2, which itself can be found as a nonvanishing solution to
the ‘reduced’ string equation

3f2 + 5f32 = 0. (42)

The ‘total normalization’ f0 and the ‘one-point function’ f1, which does not have a universal
sense, since it is coupled to an analytic term in the expansion (40), in principle are determined
by the residue formula for ∂F/∂t3, or

7f − 3tf′ + 9(f′′)5 + 3(f′′)3 = 0 (43)

giving rise to

f0 = − 9
7 f52 − 3

7 f32 = − 3
7 f32

(
1 + 3f22

)
f1 = − 9

4 f32f3 − 45
4 f42f3 = 3

4 f22. (44)

This results in the rational ‘invariant ratios’, e.g.

f4f2
f23

= −3,
f4f3
f2f5

= −1

8
,

f2f4
f0f6

= 1,
f24

f0f8
= − 6

143
,

f22
f0f4

= f2f6
f24

= −35,

(45)

to be possibly compared with the computations in the worldsheet theory.

3.3. Mixing in the (2, 7) model

The (p, q) = (2, 7) model is naively not much different from the Yang–Lee case of (2, 5)

theory considered in section 3.2. Polynomials (1) are

X = λ2 + X0, Y = λ7 +
7X0

2
λ5 + Y3λ

3 + Y1λ (46)

8
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and the calculation of flat times (4) gives

t1 = 3
4Y3X

2
0 − 105

64 X4
0 − Y1X0 t3 = 35

12X3
0 − Y3X0 + 2

3Y1

t5 = − 7
4X2

0 + 2
5Y3 t7 = 0 t9 = 2

9 .
(47)

Again, we see that (47) can be easily solved w.r.t. Yj , but the only coefficient X0 now satisfies

t1 = − 35
64X4

0 − 15
8 t5X

2
0 − 3

2 t3X0, (48)

where we put t7 = 0 for the coefficient at the ‘boundary’ operator [21].
The one-point functions (4) are given for the (2, 7) model by

∂F
∂t1

= − 7

32
X5

0 − 1

4
Y1X

2
0 +

1

8
Y3X

3
0 = − 7

32
X5

0 − 5

8
X3

0t5 − 3

8
X2

0t3

∂F
∂t3

= −1

8
Y1X

3
0 − 35

512
X6

0 +
3

64
Y3X

4
0 = − 35

256
X6

0 − 45

128
X4

0t5 − 3

16
X3

0t3

∂F
∂t5

= − 15

512
X7

0 − 5

64
Y1X

4
0 +

3

128
Y3X

5
0 = − 25

256
X7

0 − 15

64
X5

0t5 − 15

128
X4

0t3.

(49)

On the right-hand sides of (49) we already substituted the expressions for Yj in terms of times
(47), and the rest is to solve (48) by expanding in t3 and t5 and substitute the result into (49).

The scaling ansatz (16), (38) now reads as

F = t
9/2
5 f

(
t1

t2
5

,
t3

t
3/2
5

)

∂F
∂t1

= t
5/2
5 f(1),

∂2F
∂t2

1

= X0

2
= t

1/2
5 f(11), . . . ,

(50)

where we have introduced the shortened notation for the derivatives over the first argument of
f(t1, t2), and the string equation (48) turns into

t1 + 35
4 u4 + 15

2 u2 + 3t2u = 0 (51)

for u = f(11).
The expansion should be considered in the vicinity of the point t1 = 25

28 t2
5 , where the

one-point function in the first equation of (49) vanishes on the string equation (48) at t3 = 0.
It means, in particular, that the function f should be expanded around the non-vanishing
background value t1 = 25

28 of its first argument.

3.4. Ising model (p, q) = (3, 4)

The residue formulae for the polynomials

X = λ3 + X1λ + X0, Y = λ4 + Y2λ
2 + Y1λ + Y0 (52)

give rise to

Y2 = 4
3X1 + 5

3 t5, Y0 = 2
9X2

1 + 10
9 X1t5, Y1 = 4

3X0 (53)

(where the last equation is true upon t4 = 0), while X0 and X1 satisfy

t1 = − 2
3X2

0 + 4
27X3

1 + 5
9 t5X

2
1, t2 = − 2

3X0X1 − 5
3 t5X0. (54)

Differentiating equations (54), one can find explicitly expressions for the first derivatives

∂X1

∂tj
= Q

(j)

1

R
,

∂X0

∂tj
= Q

(j)

0

R
, j = 1, 2, 5, (55)

9
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with R = 4X3
1 + 12X2

0 + 20t5X
2
1 + 25t2

5 X1 and

Q
(1)
1 = 9

2 (2X1 + 5t5), Q
(1)
0 = −9X0

Q
(2)
1 = −18X0, Q

(2)
0 = −3X1(2X1 + 5t5)

Q
(5)
1 = − 5

2

(
2X3

1 + 5t5X
2
1 + 12X2

0

)
, Q

(5)
0 = −5X1X0(X1 + 5t5).

(56)

Solving the second equation of (54) for X0 and substituting the result into the first one turn it
into the Boulatov–Kazakov equation for X1 [20]:

t1 = − 6t2
2

(2X1 + 5t5)2
+

4

27
X3

1 +
5

9
t5X

2
1 (57)

(contains information about all singularities of F for arbitrary magnetic field t2 and fermion
mass t5).

It is interesting to compare the Boulatov–Kazakov equation with what gives here formula
(19). The branch points are given by dX = 0 for the first polynomial from (52), or
λ± = ±

√
−X1

3 , so that the vanishing of the derivative of function

S = t1X(λ)
1/3
+ + t2X(λ)

2/3
+ + t5X(λ)

5/3
+ + 3

7X(λ)
7/3
+ (58)

at λ± or S ′(λ)|λ+ = S ′(λ)|λ− gives rise to the last equation of (54), which is to be easily solved
for X0. Substituting the result into S ′(λ)|λ+ + S ′(λ)|λ− = 0 reproduces immediately the string
equation (57).

The one-point functions

∂F
∂t1

= 1

27
X4

1 +
10

81
t5X

3
1 − 4

9
X1X

2
0 − 5

9
t5X

2
0

∂F
∂t2

= 4

27
X3

1X0 +
10

27
t5X

2
1X0 − 8

27
X3

0

∂F
∂t5

= 40

243
X3

1X
2
0 − 10

2187
X6

1 +
25

81
t5X

2
1X

2
0 − 10

729
t5X

5
1 − 5

27
X4

0

(59)

give rise to

∂2F
∂t2

1

= X1

3
,

∂2F
∂t1∂t2

= 2X0

3
,

∂2F
∂t1∂t5

= 5

9
X2

0 − 5

81
X3

1,
∂2F

∂t2∂t5
= −10

27
X2

1X0,

∂2F
∂t2

2

= −2

9
X2

1,
∂2F
∂t2

5

= −50

81
X2

1X
2
0 +

5

243
X5

1, . . . .

(60)

At t2 = 0 one gets for the one-point functions (59)

∂F
∂t1

∣∣∣∣
t2=0

= 1

27
X4

1 +
10

81
t5X

3
1,

∂F
∂t2

∣∣∣∣
t2=0

= 0

∂F
∂t5

∣∣∣∣
t2=0

= − 10

729
X5

1

(
t5 +

X1

3

)
.

(61)

Also note that for t2 = 0 the second equation of (54) has the only reasonable solution X0 = 0,
while the first one turns into

t1 = 4
27X3

1 + 5
9 t5X

2
1, (62)

10
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which almost coincides with the perturbation of the Yang–Lee (2, 5) model by a quadratic
term (cf (35) and note that the potential X1

3 from (62) is an analogue of X0
2 from (35); see (37)

and (60). More strictly, the quadratic term can be removed by the redefinition

t̂1 = 4
27 X̂

3
1 − 25

36 t2
5 X̂1 t̂1 = t1 − 125

216 t3
5 , X̂1 = X1 + 5

4 t5. (63)

This redefinition exactly fits [21] the vanishing of the energy three-point function in the Ising
model. Indeed, if one identifies t̂1 with the cosmological constant of the worldsheet theory,
the energy three-point functions

∂3

∂t3
5

F
(
t̂1 + Ct3

5 , t2 = 0, t5
)∣∣∣∣

t5=0

=
(

6C
∂F
∂t1

+
∂3F
∂t3

5

)∣∣∣∣
t2,5=0

(64)

vanish exactly at C = 125
216 . To calculate the rhs of (64) one can use the first equation from

(59) and differentiate the last formula from (60) using (55), which is quite easy since X0 = 0
at t2 = 0. An alternative and more fundamental way is to use directly the residue formula (7)
for the third derivatives, which gives here

∂3F
∂t3

5

= resdX=0

(
dH 3

5

dX dY

)
=

∑
λ=λ±

H ′
5(λ)3

6λY ′(λ)
=

t2=t5=0
−125

972
X4

1. (65)

It is interesting to point out that under reparameterization (63) in the space of couplings

X1 = X̂1 − 5
4 t5, t1 = t̂1 + 125

216 t3
5 , (66)

the reduced string equation (62) acquires the form of (analytically continued) string
equation (35) for the Yang–Lee model, with tYL

3 ∼ t2
5 of the Yang–Lee model being substituted

by the square of t5 = t
Ising
5 of the (reduced) Ising model. However, one should use the scaling

ansatz (15) rather than (16), as has been used for the (2, 5) theory in (38) for the function
F(t̂1, t5) = F

(
t̂1 + 125

216 t3
5 , t5

)∣∣
t2=0

. Since

∂2F

∂t̂2
1

= X̂1
(
t̂1, t

2
5

) − 5

4
t5 (67)

as follows from the string equation (63) for X̂1 and the couplings are dimensional, the
gravitational Ising free energy F = F̂

(
t̂1, t

2
5

) − 5
8 t5 t̂

2
1 is an even function of t5, apart from

an analytic cubic term, and its expansion gives all the 〈ε2n〉 correlators of the gravitationally
dressed (3, 4) Ising model. We shall comment more about the relation of these two models in
the following section.

4. Ising versus Yang–Lee

Both gravitational Ising model and (2, 5) Yang–Lee minimal theory arise as two different
critical points in a system of Ising spins on a random lattice. Moreover, since both theories
have p + q = 7, they have identical scaling in the first KP variable (15), which originally has
caused a confusion, when distinguishing these two minimal string theories. In particular, this
originates from the fact that the string equations of these two models can be obtained from
each other by simple reparameterization in the space of couplings, as we have already noted
in the previous section.

However, the physical sense of parameters, arising in these two equations, is totally
different. One can say that the same KP time variable has different ‘quantum numbers’, when

11
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one takes a solution, corresponding to a different critical point. For example, the role of a
cosmological constant, coupled to a unity operator on the worldsheet, is played by t1 in the
(3, 4) Ising theory, but by t3 in the (2, 5) Yang–Lee theory. Below, we shall try to present
more details about this relation and describe it as much as possible from the point of view of
the (dispersionless) KP theory.

4.1. Kostov equation

The Kostov equation is a name given by Alesha Zamolodchikov to a ‘phenomenological’
transcendental equation, satisfied by the second derivative of free energy over the cosmological
constant u ∼ ∂2F

∂x2 of the form

uν + tuν−1 = x, (68)

where ν = ν(p, q) = p

q−p
. For the cases of interest, one gets integer ν(2, 3) = 2 for pure

gravity and ν(3, 4) = 3 for Ising (both are unitary with q = p + 1), but ν(2, 5) = 2
3 .

Hence, for the Ising model the Kostov equation reads

u3
I + tIu

2
I = xI (69)

and coincides (after renormalization xI ∼ t1, tI ∼ t5 and uI ∼ X1 = 3 ∂2F
∂t2

1
; below in this

section, we shall use different normalizations from the conventional ones of KP theory, to get
rid of ugly numerical constants) with the Boulatov–Kazakov equation (62) when t2 = 0, i.e.
for a vanishing magnetic field.

For the Yang–Lee model equation (68) u
2/3
YL + tYLu

−1/3
YL = xYL after the substitution

uYL = v3
YL turns into

v3
YL − xYLvYL = −tYL (70)

which coincides (again, up to a similar renormalization of couplings) with the Yang–Lee string
equation (35) upon t3 ∼ xYL, t1 ∼ tYL and X0 = 2 ∂2F

∂t2
1

∼ vYL.
Comparing (70) with (69) one finds that, as we have already done in the previous section,

one may indeed identify uI with vYL after appropriate shifts of the variables (66) and point out
the change of the quantum numbers: t1 ∼ xI ∼ tYL and t3 ∼ t2

I ∼ xYL.
The relation uYL ∼ v3

YL is quite clear from the point of view of equations (14). It is just a
particular Hirota equation for the dispersionless KP hierarchy, expressing

uYL ∼ ∂2F
∂t2

3

= 3

(
∂2F
∂t2

1

)3

∼ v3
YL (71)

as the function satisfying equation (68), and being here a double derivative of free energy w.r.t
the third time of the hierarchy, in terms of the canonical KP potential, it being always a double
derivative w.r.t. the first time.

From the point of view of the KP theory it is also rather clear why equation (68) is
applicable only for p < q < 2p, in particular only for K = 2, 3 with ν(2, 2K − 1) = 2

2K−3 .
When transforming it to a conventional KdV string equation (20), as was done in (70) for
the Yang–Lee model, one finds that the variable t should be generally identified with the
t7−2K th time of the KP hierarchy, which does not have a clear sense at K > 3.

12
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4.2. Zamolodchikov curve for Ising

If all parameters of the gravitational Ising model are ‘alive’, the best way is to study, following
[19], the fixed area partition function

Za =
∫

dx

2π ia
u exa = −

∫
du

2π ia2
exa

x = u3 +
3

2
T u2 +

H 2

(u + T )2
,

(72)

where we again use the rescaled variables x = xI ∼ t1,H ∼ t2, T ∼ t5 and the rescaled
Boulatov–Kazakov equation (57) for u ∼ ∂2F

∂x2 . The saddle point equation dx
du

= 0 for the
integral in (72) is given by

u(u + T )4 = 2
3H 2 ≡ ξ 2T 5. (73)

In rescaled variables u ∼ T U , the saddle point equation (73) presents a Riemann surface

U(U + 1)4 = ξ 2, (74)

which is a double-cover of the Uc-plane and a five-sheet cover of the ‘magnetic’ plane ξ , and
the function x on the curve (74) contains a description of all singularities in the gravitational
Ising model [23].

In particular, the Yang–Lee singularity arises at a critical value of the magnetic field
H = Hc, where two values ξc =

√
2
3

Hc

T 5/2 = ±i 16
55/2 correspond to two points on the curve (74)

Uc = −1

5
, ξ 2

c = Uc(Uc + 1)4 = −44

55
, (75)

where dξ

dU

∣∣
U=Uc

= 0. At the Yang–Lee point, one also obviously has d2x
dU 2

∣∣
U=Uc

= 0, and

x = − 7

50
T 3 +

5

2
(U − Uc)

3 + · · · = xc +
625

128
T 3

(
ξ 2 − ξ 2

c

2

)3/2

+ · · · (76)

so that X ∼ x−xc

T 3 ∼ μ3/2 scales as the right fractional power of the cosmological constant

xYL = μ ∼ ξ − ξc in the Yang–Lee model, corresponding to the well-known scaling t1 ∼ t
3/2
3

of KP times at the critical point with p + q = 7. For the expansion of the Boulatov–Kazakov
equation, one can now write

X

ε3
∼ μV + V 3 + O(ε), (77)

where H − Hc ∼ ε2μ,U + 1
5 ∼ εV , i.e. the Zamolodchikov curve in the vicinity of

the Yang–Lee singularity is described, up to renormalization of parameters, by the string
equation (35).

5. Discussion

We have tried to demonstrate in this paper that all spherical correlation functions in the
quantum Liouville gravity are contained and can be easily extracted from the ‘science of
polynomials’—dispersionless KP hierarchy. A simple collection of residue formulae allows
us to extract the invariant ratios, to be further compared with the correlation functions in
worldsheet theory, which can now also be computed—though in a much more cumbersome
way—mostly due to the results of Alesha Zamolodchikov in the Liouville theory.
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Such an application of classical integrable science to the problems of two-dimensional
quantum physics is already a step towards dynamical physics from topological strings, where
similar science has been already used with visible success; see e.g. [17, 18, 25–28].

The most nontrivial point in the application of this ‘integrable science’ is its interpretation
in terms of the worldsheet theory. The first point concerns resonances [21, 22], which
allow for nonlinear relations between the couplings in KP and worldsheet theories when the
fractions of the KPZ scaling dimensions of couplings [2] are an integer. We have observed
this phenomenon in the cases of (2, 7) and (3, 4) minimal theories, where this phenomenon
is quite easy to take into account by just playing with the residue formulae for one-, two-
and three-point functions. Naively, these resonance reparameterizations look like particular
W -flows in the space of couplings, but this question deserves further investigation.

Another nontrivial point is related to the fact that KP times may have a different physical
sense, or different quantum numbers, when we expand a KP solution around different
backgrounds, corresponding to particular minimal theories. We have noted this, say, when
comparing the formulations for the gravitational Ising and Yang–Lee models. This is the
simplest observation for a very important generic fact that physical observables may change
their quantum numbers, when effective field theory is moved in the moduli space; for example,
in four-dimensional supersymmetric gauge theories, electrically charged objects may capture
magnetic charges and vice versa. Two-dimensional quantum gravity is therefore a good
laboratory for studying such effects.

Finally, let us say a few words on how the picture of dispersionless KP for the minimal
string theory could be deformed towards quasiclassical hierarchies of a generic nonsingular
type. An invariant way to look at the basic polynomials X = λp + · · · and Y = λq + · · · (1) is
to say that they satisfy an algebraic equation

Yp − Xq −
∑

fijX
iY j = 0 (78)

with some particular coefficients {fij }. Generally, for arbitrary coefficients this is a smooth
curve of genus

g = (p − 1)(q − 1)

2
, (79)

which is a resolution or desingularization of the situation, when X and Y can be parameterized
as a polynomial of a uniformizing global variable λ. This number coincides with the number
of primaries in the corresponding minimal conformal (p, q) theory. Such curves can be
obtained, say, by reduction of the curve of the two-matrix model [24]. An interesting example
is the hyperelliptic curve of the (2, 7) model Y 2 = X7 +

∑5
j=0 fjX

j , satisfied by (46)
with the coefficients fj = fj (X0, Y1, Y3), j = 0, . . . , 5. At vanishing times (except for

t9 = 2/9, see (47), it shrinks to a cusp Y 2 = X7 or Y 2 = X3
(
X2 + 5t5

2

)2
for nonvanishing

cosmological t5, which is however ‘resolved’ by passing to worldsheet times t1 → t1 + 25
28 t2

5

as Y 2 = (X − u)
(
X3 + u

2 X2 − u2

2 X − u3

8

)2
with u2 = − 20t5

7 . This form directly generalizes

the curve of the Yang–Lee model Y 2 = (X − u)
(
X2 − u

2 X + u2

4

)2
for (33) with u2 = − 12t3

5
being proportional to nonvanishing cosmological time.

For such curves, the residue formulae we have discussed above should be extended by
period integrals

∮
Y dX along all nontrivial cycles on the curve (78). The sense of such

period integrals is analogous to the Seiberg–Witten periods or the filling fractions in the
matrix models. As usual in quasiclassical hierarchies, the appearance of corresponding
period variables reflects an increasing number of unfrozen coefficients in equation (78) or new
deformations of the background of the minimal string theories. The study of such deformations
is again a long-standing, but still an open, problem.
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